Главная       Продать работу       Блог       Контакты       Оплата       О нас       Как мы работаем       Регистрация       Вход в кабинет
Тех. дипломные работы
   автомобили
   спец. техника
   станки
   тех. маш.
   строительство
   электроснабжение
   пищевая промышленность
   водоснабжение
   газоснабжение
   автоматизация
   теплоснабжение
   холодильники
   машиностроение
   др. тех. специальности

Тех. курсовые работы
   автомобили
   спец. техника
   станки
   тех. маш.
   строительство
   детали машин
   электроснабжение
   газоснабжение
   водоснабжение
   пищевая промышленность
   автоматизация
   теплоснабжение
   ТММ
   ВСТИ
   гидравлика и пневматика
   машиностроение
   др. тех. специальности

Тех. дополнения
   Отчеты
   Расчетно-графические работы
   Лекции
   Задачи
   Лабораторные работы
   Литература
   Контрольные работы
   Чертежи и 3D моделирование
   Тех. soft
   Рефераты
   Общий раздел
   Технологический раздел
   Конструкторский раздел
   Эксплуатационный раздел
   БЖД раздел
   Экономический раздел
   Экологический раздел
   Автоматизация раздел
   Расчетные работы

Гум. дипломные работы
   педагогика и психология
   астрономия и космонавтика
   банковское, биржевое дело
   БЖД и экология
   биология и естествознание
   бухгалтерский счет и аудит
   военное дело
   география
   геология
   государство и право
   журналистика и СМИ
   иностранные языки
   история
   коммуникации
   краеведение
   кулинария
   культура и искусство
   литература
   экономика и торговля
   математика
   медицина
   международное отношение
   менеджмент
   политология
   музыка
   религия
   социология
   спорт и туризм
   таможенная система
   физика
   химия
   философия
   финансы
   этика и эстетика
   правознавство

Гум. курсовые работы
   педагогика и психология
   астрономия и космонавтика
   банковское, биржевое дело
   БЖД и экология
   биология и естествознание
   бухгалтерский счет и аудит
   военное дело
   география
   геология
   государство и право
   журналистика и СМИ
   иностранные языки
   история
   коммуникации
   краеведение
   кулинария
   культура и искусство
   литература
   экономика и торговля
   математика
   медицина
   международное отношение
   менеджмент
   политология
   музыка
   религия
   социология
   спорт и туризм
   таможенная система
   физика
   химия
   философия
   финансы
   этика и эстетика
   правознавство

Гум. дополнения
   Отчеты
   Расчетные работы
   Лекции
   Задачи
   Лабораторные работы
   Литература
   Контрольные работы
   Сочинения
   Гум. soft
   Рефераты

Рефераты
   Авиация и космонавтика
   Административное право
   Арбитражный процесс
   Архитектура
   Астрология
   Астрономия
   Банковское дело
   Безопасность жизнедеятельнос
   Биографии
   Биология
   Биология и химия
   Биржевое дело
   Ботаника и сельское хоз-во
   Бухгалтерский учет и аудит
   Валютные отношения
   Ветеринария
   Военная кафедра
   ГДЗ
   География
   Геодезия
   Геология
   Геополитика
   Государство и право
   Гражданское право и процесс
   Делопроизводство
   Деньги и кредит
   ЕГЭ
   Естествознание
   Журналистика
   ЗНО
   Зоология
   Издательское дело и полиграф
   Инвестиции
   Иностранный язык
   Информатика
   Информатика, программировани
   Исторические личности
   История
   История техники
   Кибернетика
   Коммуникации и связь
   Компьютерные науки
   Косметология
   Краеведение и этнография
   Краткое содержание произведе
   Криминалистика
   Криминология
   Криптология
   Кулинария
   Культура и искусство
   Культурология
   Литература : зарубежная
   Литература и русский язык
   Логика
   Логистика
   Маркетинг
   Математика
   Медицина, здоровье
   Медицинские науки
   Международное публичное прав
   Международное частное право
   Международные отношения
   Менеджмент
   Металлургия
   Москвоведение
   Музыка
   Муниципальное право
   Налоги, налогообложение
   Наука и техника
   Начертательная геометрия
   Оккультизм и уфология
   Остальные рефераты
   Педагогика
   Политология
   Право
   Право, юриспруденция
   Предпринимательство
   Прикладные науки
   Промышленность, производство
   Психология
   психология, педагогика
   Радиоэлектроника
   Реклама
   Религия и мифология
   Риторика
   Сексология
   Социология
   Статистика
   Страхование
   Строительные науки
   Строительство
   Схемотехника
   Таможенная система
   Теория государства и права
   Теория организации
   Теплотехника
   Технология
   Товароведение
   Транспорт
   Трудовое право
   Туризм
   Уголовное право и процесс
   Управление
   Управленческие науки
   Физика
   Физкультура и спорт
   Философия
   Финансовые науки
   Финансы
   Фотография
   Химия
   Хозяйственное право
   Цифровые устройства
   Экологическое право
   Экология
   Экономика
   Экономико-математическое мод
   Экономическая география
   Экономическая теория
   Этика
   Юриспруденция
   Языковедение
   Языкознание, филология

Главная > Рефераты > Наука и техника
Название:
Электрон в слое

Тип: Рефераты
Категория: Рефераты
Подкатегория: Наука и техника

Цена:
12 руб



Подробное описание:

Министерство Образования, Молодежи и Спорта

Республики Молдова

Государственный университет Молдовы

Курсовая Работа

Тема: Электрон в слое.

Работу выполнил

студент 3-го курса:

Радченко Андрей

Кишинёв 1997 г.
Микрочастица (электрон) в слое.

Собственно говоря, одномерная задача, которая сейчас будет рассмотрена, во многих учебных руководствах довольно подробно разобрана путём введения некоторых упрощений.

Она состоит в следующем :

Микрочастица (электрон) движется вдоль оси x , и её движение полностью определяется следующим гамильтонианом :

ì-ћ2 /(2m)׶2 /¶x2 + U0 , x < -a

Ùï

H = í-ћ2 /(2m0 )׶2 /¶x2 , -a < x < a

ï

î-ћ2 /(2m)׶2 /¶x2 +U0 , x > a

Где m - эффективная масса электрона в областях I , III ;

m0 - эффективная масса электрона в области II.

Запишем уравнение Шрёдингера для каждой области :

ì¶2 YI /¶x2 + 2m/ћ2 ×(E - U0 )YI = 0 , x £-a

ï

í¶2 YII /¶x2 + 2m02 ×E×YI = 0 , -a £ x £ a

ï

î¶2 YIII /¶x2 + 2m/ћ2 ×(E - U0 )×YI = 0 , x ³ a

Область I :

Общий вид решения уравнения Шрёдингера для 1-ой области записывается сразу :

YI (x) = A×exp(n×x) + B×exp(-n×x).

Используя свойство ограниченности волновой функции, мы придём к тому что B = 0. Значит,

YI (x) = A×exp(n×x).

Волновая функция для второй области тоже элементарно определяется :

YII (x) = C×exp(i ×k×x) + D×exp(-i ×k×x).

Функция состояния для третьей области выглядит так :

YIII (x) = F×exp(-n×x).

Где

k = (2m0 ×E/ћ2 )1/2

n = (2m×(U0 -E)/ћ2 )1/2 .

Стратегия наших дальнейших действий будет состоять в следующем :

¨ Напишем систему из 4 уравнений, удовлетворение которых эквивалентно удовлетворению функциями граничным условиям.

¨ В этой системе из 4 уравнений будут фигурировать неизвестные коэффициенты A,C,D и F. Мы составим линейную однородную систему относительно них.

¨ Ясно, что существование нетривиальных решений допускается только в случае когда детерминант системы равен нулю. Как выяснится чуть позже, из этого весьма полезного факта мы извлечём уравнение, корнями которого будут возможные уровни энергии.

Приступим к осуществлению первого пункта, т.е. запишем условия сшивания волновых функций :

YI (x=-a) = YII (x=-a)

YII (x=a) = YIII (x=a)

YI ¢(x=-a)/m = YII ¢(x=-a)/m0

YII ¢(x=a)/m0 = YIII ¢(x=a)/m

А в наших определениях этих функций это выглядит так :

A×exp(-n×a) = C×exp(-i ×k×a) + D×exp(i ×k×a)

m- 1 ×A× n×exp(-n×a) = i ×k×/m0 ×(C×exp(-i ×k×a) - D×exp(i ×k×a))

C×exp(i ×k×a) + D×exp(-i ×k×a) = F×exp(-n×a)

i ×k×/m0 ×(C×exp(i ×k×a) - D×exp(-i ×k×a)) = - n/m×F×exp(-n×a).

Теперь составим определитель :

|exp(-n×a) -exp(-i ×k×a) -exp(i ×k×a) 0 |

|m- 1 ×n×exp(-n×a) -1/m0 ×i ×k×exp(-i ×k×a) 1/m0 ×i ×k×exp(i ×k×a) 0 |

|0 exp(i ×k×a) exp(-i ×k×a) -exp(-n×a) |

|0 1/m0 ×i ×k×exp(i ×k×a) -1/m0 ×i ×k×exp(-i ×k×a) 1/m×n×exp(-n×a)|

Если теперь раскрыть этот определитель по обычным правилам и приравнять его к нулю, то мы получим следующее уравнение для уровней энергии:

((n/m)2 - (k/m0 )2 )×Sin(2×k×a) + 2×k×n/(m×m0 )×Cos(2×k×a) = 0.

Это уравнение решается численным методом, а именно, методом Ньютона.

Найдём неизвестные коэффициенты A, C, D, F для более полного описания волновой функции. Для этого воспользуемся некоторыми соотношениями, которые непосредственно вытекают из условий сшивания и условия нормировки.

C = F×exp(-n×a)×{exp(i ×k×a) + exp(-3×i ×k×a) ×( i ×k/m0 - n/m)/(n/m + i ×k/m0 )}

D = C×exp(-2×i ×k×a)×( i ×k/m0 - n/m)/(n/m + i ×k/m0 )

A = exp(n×a)×(C×exp(-i ×k×a) + D×exp(i ×k×a)) .

Поскольку A, C и D линейно зависят от F, то целесообразно ввести обозначения :

A = RA ×F

C = RC ×F

D = RD ×F.

RA , RC , RD - известные постоянные.

Таким образом, если мы каким-то образом узнаем константу F, то мы определим остальные константы A, C, D. А сделаем мы это с помощью условия нормировки.

Действительно :

YI (x) = F×RA ×exp(n×x)

YII (x) = F×( RC ×exp(i ×k×x) + RD ×exp(-i ×k×x)).

YIII (x) = F×exp(-n×x).

I1 + I2 + I3 = 1

Где

I1 = |F|2 ×|RA |2 ×òQ exp(2×n×x)×dx = |F|2 ×|RA |2 ×(2×n)- 1 ×exp(2×n×x) =

= |F|2 ×|RA |2 ×(2×n)- 1 ×exp(-2×n×a)

I2 = |F|2 ×{ òL |RC |2 ×dx + òL |RD |2 ×dx + RC ×RD * ×òL exp(2×i ×k×x)×dx +

+ RC * ×RD ×òL exp(-2×i ×k×x)×dx } = |F|2 ×{ 2×a×(|RC |2 + |RD |2 ) +

((exp(2×i ×k×a) - exp(-2×i ×k×a))×RC ×RD * /(2×i ×k) +

+ i ×((exp(-2×i ×k×a) - exp(2×i ×k×a))×RC * ×RD /(2×k) }

I3 = |F|2 ×òW exp(-2×n×x)×dx = |F|2 ×(2×n)- 1 ×exp(-2×n×a)

|F|2 = { |RA |2 ×(2×n)- 1 ×exp(-2×n×a) + 2×a×(|RC |2 + |RD |2 ) +

((exp(2×i ×k×a) - exp(-2×i ×k×a))×RC ×RD * /(2×i ×k) +

+ i ×((exp(-2×i ×k×a) - exp(2×i ×k×a))×RC * ×RD /(2×k) + (2×n)- 1 ×exp(-2×n×a) }- 1 .

Теперь, когда мы знаем F, нетрудно определить коэффициенты A, C, D, а значит и волновую функцию, характеризующую состояние электрона.

Электрон в слоях

Задача, которая сейчас будет описана, характеризуется тем, что потенциал обладает пространственной периодичностью. Схематически это изображается так.

То есть, это ни что иное как одномерное движение электрона в периодическом поле. Графически это можно изобразить серией потенциальных барьеров или, как говорят, серией потенциальных ступенек.

Аналитически условие периодичности потенциала записывается весьма просто:

U(x)=U(x+2a) (1)

Соотношение (1) записано в предположении, что ширина каждой потенциальной ямы равна ширине всякого потенциального барьера.

Ясно, что волновые функции, соответствующие областям I, III, удовлетворяют одному и тому же уравнению Шредингера:

2 Y/¶x2 + 2m/ћ2 ×(E-U0 )Y = 0

следовательно эти функции отличаются только постоянным множителем, который называется фазовым множителем.

Этот фазовый множитель мы будем обозначать следующим образом:

r = exp(i 2ak)

Тогда Y(x+2ma) = Y(x)×rm , где m=0, ±1, ±2,... (2)

Оказывается, что достаточным для определения дискретного энергетического спектра (рассматривается только случай когда E<U0 ) и волновой функции является рассмотрение областей I, II, III. Действительно, пользуясь соотношением (2), мы определим волновую функцию на всей действительной оси.

Рассмотрим область I:

Уравнение Шредингера для нее записывается в виде:

2 YI /¶x2 + 2m22 ×(E-U0 )YI = 0 , 0 > x > -a

его решение выглядит просто:

YI (x) = A×exp(n×x) + B×exp(-n×x).

Где n = (2m2 (U0 -E) /ћ2 )1/2

Рассмотрим область II:

Уравнение Шредингера для нее записывается в виде:

2 YII /¶x2 + 2m12 ×EYII = 0 , a³x³ 0

его решение выглядит просто:

YII (x) = C×exp(i ×p×x) + D×exp(-i ×p×x).

Где p = (2m1 E/ћ2 )1/2

Рассмотрим область III:

2 YIII /¶x2 + 2m22 ×(E - U0 )YIII = 0 , 2a > x > a

его решение выглядит просто:

YIII (x) = r (A×exp(n×x) + B×exp(-n×x)).

Запишем граничные условия:

YI (x=0) = YII (x=0)

YII (x=a) = YIII (x=a)

YI ¢(x=0)/m = YII ¢(x=0)/m0

YII ¢(x=a)/m0 = YIII ¢(x=a)/m

Подставляя волновые функции в эту систему уравнений, мы получим некоторые связи между коэффициентами A, B, C, D:

A+B=C+D

C exp(i p a)+D exp(-i p a) = exp(i 2 a k) (A exp(n a)+B exp(-n a))

(A-B) n/m2 = (C-D) i p / m1

(C exp(i p a)-D exp(-i p a)) i p / m1 = exp(i 2 a k) n/m2 (A exp(n a)-B exp(-n a))

Следуя приведённым выше соображениям, мы составим определитель :

|1 1 -1 -1 |

|exp(i ×k×2a+n×a) exp(i ×k×2a-n×a) -exp(i ×p×a) -exp(-i ×p×a) |

|n/m2 -n/m2 -i ×p/m1 i ×p/m1 |

|n/m2 exp(i ×k×2a+n×a) -n/m2 ×exp(i ×k×2a-n×a) - i ×p/m1 ×exp(i ×p×a) i ×p/m1 ×exp(-i ×p×a) |

и приравняем его к нулю.

Результатом раскрытия определителя будет весьма громоздкое уравнение содержащее в качестве неизвестного энергию электрона.

Рассчитанные уровни энергии для различных эффективных масс приведены ниже.

a=10; U=10; m1 =4; m2 =1

0.1135703312666857 0.6186359585387896 0.2019199605676639
0.3155348518478819 0.05047267055441365 1.263391478912778
0.4544326758658974 2.137353840637548 0.808172718170137
2.479933076698526 0.4544326758658974 6.168062551132728
5.611693924351967 1.820461802850339 1.529165865668653
1.023077302091622

a=10 U=10m1 =2m2 =1

0.1032788024178655 0.2324238959628721 0.41331603936642
0.6460490460448886 0.930750939555283 1.26759057783714
1.656787195799296 2.098624192369327
2.593469359607937 3.141805331837109
3.744277072860902 5.887485640841992

a=10 U=10m1 =1m2 =1

0.05408120469105441 0.2163802958297131 0.4870681554965061
0.86644533469418 1.354969224117534 1.953300729714778
2.662383817919513 4.418966218448088 7.961581805911094

a=10 U=10m1 =0.5m2 =1

0.118992095909544 4.249561710930034 1.068004282376146
0.4754473139332004 5.78216724725356 2.955345679469631
1.895012565781256

a=10 U=10m1 =.25m2 =1

0.2898665804439349 4.30026851446248
2.479039415645616 1.132264393019809



Комментарий:

В данном реферате рассмотрено определение функций и их решение.


Рекомендовать другу
50/50         Партнёрка
Отзывы